Quantitative trace estimates for the Maxwell system in Lipschitz domains
نویسندگان
چکیده
We develop various quantitative estimates for the anisotropic Maxwell system in Lipschitz domains, with a focus on how precisely depend character of domain. pay special attention to trace operators and extension over certain Sobolev spaces. Finally, we provide weak formulation interior scattering problem terms exterior Calder\'on operator, explicit bounds solution incident fields
منابع مشابه
Estimates for the Stokes Operator in Lipschitz Domains
We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...
متن کاملWeighted Estimates in L for Laplace’s Equation on Lipschitz Domains
Let Ω ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. For Laplace’s equation ∆u = 0 in Ω, we study the Dirichlet and Neumann problems with boundary data in the weighted space L2(∂Ω, ωαdσ), where ωα(Q) = |Q−Q0|α, Q0 is a fixed point on ∂Ω, and dσ denotes the surface measure on ∂Ω. We prove that there exists ε = ε(Ω) ∈ (0, 2] such that the Dirichlet problem is uniquely solvable if 1 − d < α < d − 3 +...
متن کاملTrace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions
A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces W 1, p (Ω) for 1 ≤ p < ∞ when Ω ⊂ R is a Lipschitz domain. The extension of this result to W m, p (Ω) for m ≥ 2 and 1 < p < ∞ is now well-known when Ω is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compati...
متن کاملOn Estimates of Biharmonic Functions on Lipschitz and Convex Domains
Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...
متن کاملThe Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions
Let Ω ⊂ R3 be a bounded weak Lipschitz domain with boundary Γ := ∂ Ω divided into two weak Lipschitz submanifolds Γτ and Γν and let denote an L∞-matrix field inducing an inner product in L(Ω). The main result of this contribution is the so called ‘Maxwell compactness property’, that is, the Hilbert space { E ∈ L(Ω) : rotE ∈ L(Ω), div E ∈ L(Ω), ν × E|Γτ = 0, ν · E|Γν = 0 } is compactly embedded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in The Applied Sciences
سال: 2021
ISSN: ['1099-1476', '0170-4214']
DOI: https://doi.org/10.1002/mma.7434