Quantitative trace estimates for the Maxwell system in Lipschitz domains

نویسندگان

چکیده

We develop various quantitative estimates for the anisotropic Maxwell system in Lipschitz domains, with a focus on how precisely depend character of domain. pay special attention to trace operators and extension over certain Sobolev spaces. Finally, we provide weak formulation interior scattering problem terms exterior Calder\'on operator, explicit bounds solution incident fields

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Stokes Operator in Lipschitz Domains

We study the Stokes operator A in a threedimensional Lipschitz domain Ω. Our main result asserts that the domain of A is contained in W 1,p 0 (Ω)∩W (Ω) for some p > 3. Certain L∞-estimates are also established. Our results may be used to improve the regularity of strong solutions of Navier-Stokes equations in nonsmooth domains. In the appendix we provide a simple proof of area integral estimate...

متن کامل

Weighted Estimates in L for Laplace’s Equation on Lipschitz Domains

Let Ω ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. For Laplace’s equation ∆u = 0 in Ω, we study the Dirichlet and Neumann problems with boundary data in the weighted space L2(∂Ω, ωαdσ), where ωα(Q) = |Q−Q0|α, Q0 is a fixed point on ∂Ω, and dσ denotes the surface measure on ∂Ω. We prove that there exists ε = ε(Ω) ∈ (0, 2] such that the Dirichlet problem is uniquely solvable if 1 − d < α < d − 3 +...

متن کامل

Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions

A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces W 1, p (Ω) for 1 ≤ p < ∞ when Ω ⊂ R is a Lipschitz domain. The extension of this result to W m, p (Ω) for m ≥ 2 and 1 < p < ∞ is now well-known when Ω is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compati...

متن کامل

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains

Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...

متن کامل

The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions

Let Ω ⊂ R3 be a bounded weak Lipschitz domain with boundary Γ := ∂ Ω divided into two weak Lipschitz submanifolds Γτ and Γν and let denote an L∞-matrix field inducing an inner product in L(Ω). The main result of this contribution is the so called ‘Maxwell compactness property’, that is, the Hilbert space { E ∈ L(Ω) : rotE ∈ L(Ω), div E ∈ L(Ω), ν × E|Γτ = 0, ν · E|Γν = 0 } is compactly embedded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in The Applied Sciences

سال: 2021

ISSN: ['1099-1476', '0170-4214']

DOI: https://doi.org/10.1002/mma.7434